Analysis of image striping due to polarization correction artifacts in MODIS Aqua ocean scenes

Gerhard Meister¹, Ewa Kwiatkowska², Charles McClain³

1: Futuretech Corp., 2: SAIC, 3: NASA

NASA Ocean Biology Production Group Goddard Space Flight Center, Maryland

Background

- Ocean color has stringent calibration requirements of about 0.2% (85-95% of TOA signal is subtracted)
- Even if nLw accuracy is within specification (5%), we often see striping in the images
- Striping can be caused by inaccuracies in calibration or characterization (e.g. polarization: local striping)

MODIS detector residuals

- Primary calibration source: solar diffuser
 (SD) measurements for each detector
- Secondary calibration source: lunar measurements, applied as a scan angle correction averaged over detectors
- Lunar detector residuals to SD calibration: detector 1 is about 0.5% higher than detector 10 (MCST result)

MODIS Aqua TOA Analysis:

• Goal: quantify Aqua detector dependency for all ocean bands including the NIR bands for earthview TOA radiances (Lt's)

• Method:

- find runs of 20 pixels along the track which meet strict flag and low chlorophyll/AOT requirements
- for each run calculate percent differences between the Lt at mirror side 1 detector 1 and the Lt's at the other pixels in the run
- average percent differences for all the runs found

Aqua detector/mirror-side dependency – scattering angle

Aqua detector/mirror-side dependency Rayleigh and aerosol radiances

Southern Hemisphere

La - solid lines (aerosols)

Rayleigh broken lines shifted down from original radiance (can correct for Rayleigh

Residuals of TOA and lunar analysis:

Residuals of TOA and lunar analysis:

MODIS Aqua nLw 412nm, before correction:

After correction:

MODIS Polarization Characterization

- Detector dependency of prelaunch characterization questionable
- OBPG only uses band-specific characterization

MODIS Aqua Detector Specific Polarization Measurements

Left: Stars = Measurements Solid line = Fourier fit

Right:
Stars = Difference of measurements
From detector averaged measurements
Solid line = Diff. of fit from avg. fit

MODIS Aqua Detector Specific Polarization Measurements

Left: Stars = Measurements Solid line = Fourier fit

Right: Stars = Difference of measurements From detector averaged measurements Solid line = Diff. of fit from avg. fit

MODIS Aqua Detector Specific Polarization Measurements

Discussion

- L2 validation shows problem with current polarization correction implementation at 412nm
- Correction of problem difficult because
 - a) NIR bands influence VIS bands
 - b) nature of polarization correction does not allow easy inversion:

$$L_{m}=L_{t} * p_{c}$$

$$p_{c} = (1+p_{a} d_{p}cos(2 beta -2 delta))$$

Simplified approach:

- Assume that phase angle delta is approximately correct
- Separate L2 analysis into two cases: $p_c > 1$ and $p_c < 1$
- Striping should reverse between two cases
- Striping should allow us to determine whether p_a is too high or too low

Implementation for MODIS Aqua:

- Select granules with low cloud coverage (2 from northern, 5 from southern hemisphere)
- Select frames where nLw from all 10 detectors are constant (standard deviation less than 5%)
- Classify selected frames into 4 p_c classes
- Calculate average over all (normalized) frames for each class for each detector (when number of frames is > 1000)

L2 analysis results for atm. Corr. products

Results for atm. Corr. Products:

- Band 15 has low polarization sensitivity => p_c almost always between 0.995 and 1.005
- Band 16 has no entries for $p_c > 1.005$, possibly due to noise threshold
- AOT detector 4 is often outlier, can also be seen in epsilon (derived from B15/B16 ratio), probably not a polarization problem (can be seen for all p_c classes)
- Different trends for AOT for northern and southern hemisphere

L2 analysis results for nLw products

Results for nLw products:

- Strong difference between northern and southern hemisphere for 412nm, but not for 443nm
- No clear reversal of striping between p_c <0.995 and p_c >1.005 for 412nm
- Very low residual striping for 443nm (agrees with global L2 validation)

Summary

- MODIS Aqua ocean color products are still affected by residual striping, which appears to be partly related to polarization
- Methodology presented here leads to inconclusive results, probably because differences between northern and southern hemisphere dominate striping pattern
- We expect that this method will provide better results for MODIS Terra mirror side differences, where polarization characteristics are largely unknown at 412nm after 30% degradation

Acknowledgements

• Thanks to members of MCST and OBPG for their support

Backup Slides

MODIS SD Measurement Setup (Waluschka et al., 2004)

Proc. of SPIE Vol. 5542 343

Lunar Measurements:

Detector residuals to SD calibration: detector 1 is about 0.5% higher than detector 10 (MCST result)

MODIS scan:

